📘
notes
  • Center
  • Language
    • Python
      • Python environment
      • Advanced Python
      • Python Standard Libary
      • Python Third Party
      • CPython
      • Python MISC
    • C++
      • C++ Draft
    • Java
      • JavaSE
    • SQL
      • SQL
    • Rust
      • Rust
  • Tool
    • Git
    • Docker
    • Database
    • Linux & Shell
      • shell-cheet-sheet
    • Vim
    • gcc & make & cmake
    • misc
  • Note
    • DL
      • DL-deploy
      • huggingface
      • pytorch-lightning
      • Pytorch
      • TensorFlow
    • NLP
    • CV
      • OpenCV
      • mmlab
    • Audio
    • GNN
    • CUDA
    • Triton
    • TODO LIST
    • Draft
  • Learn
    • C++ Primer
    • C++ Primer Plus
    • CSAPP
    • CPython Internals
Powered by GitBook
On this page
  • logging
  • argparse
  • os
  • io
  • collections
  • defaultdict
  • OrderedDict
  • typing【涉及到generic看不懂】
  • enum
  • dataclasses (python>=3.7 才可用)
  • unicodedata
  • subprocess (待补充)
  • multiprocessing(待补充)
  • multiprocessing.Process
  • Pool
  • Queue、Pipe
  • concurrent.futures
  • 并发执行
  • 例子1: 使用concurrent.futures完成子任务异步调用
  • 例子2: 多个进程修改变量
  • re、glob
  • pattern的写法
  • 常用函数
  • 更多说明
  • 样例
  • python re模块的实现
  • linux下的通配符(glob)
  • ctypes
  • 1. C/C++程序的编译
  • 2. 使用ctypes
  • 3. ctypes官方文档的学习记录
  • inspect
  • weakref
  • json
  • asyncio
  • await vs create_task (OK)
  • Future and run_in_executor (OK)
  • select/selector

Was this helpful?

Edit on GitHub
  1. Language
  2. Python

Python Standard Libary

官方文档:https://docs.python.org/3/library/index.html

logging

基本的用法,日志信息打印在终端并且同时保存在文件中(运行程序的过程中文件内容会不断增加,不是运行完后一次性写入)

import logging
logname = "xx.py"
filename = "x.log"
logger = logging.getLogger(logname)  # logname为可选参数

fh = logging.FileHandler(filename, mode="w")
fh.setFormatter(logging.Formatter(fmt="%(asctime)s %(filename): %(levelname): %(message)s"))
fh.setLevel(logging.INFO)
logger.addHandler(fh)

ch = logging.StreamHandler(sys.stdout)
ch.setLevel(logging.INFO)
ch.setFormatter(fmt="%(asctime)s: %(message)s")
logger.addHandler(ch)

logger.setLevel(logging.INFO)
logger.info("xxx")

控制输出内容,不同的日志文件写不同的内容

import logging
def get_logger(logger_name,log_file,level=logging.INFO):
	logger = logging.getLogger(logger_name)
	formatter = logging.Formatter('%(asctime)s : %(message)s', "%Y-%m-%d %H:%M:%S")
	fileHandler = logging.FileHandler(log_file, mode='w')
	fileHandler.setFormatter(formatter)

	logger.setLevel(level)
	logger.addHandler(fileHandler)

	return logger

log_file1 = '1.log'
log_file2 = '2.log'
# logger_name确保不相同,才会生成两个实例
log1 = get_logger('log1', log_file1)
log2 = get_logger('log2', log_file2)
log1.error('log1: error')
log2.info('log2: info')

备注:要产生不同的logger,要传递不同的logger_name,例如如下情况得到的两个logger会是一样的:

import logging
import sys
import os

def get_logger(filename):
    os.makedirs(os.path.dirname(os.path.abspath(filename)), exist_ok=True)
    logger = logging.getLogger()

    fh = logging.FileHandler(filename, mode="w")
    fh.setFormatter(logging.Formatter(fmt="%(asctime)s: %(message)s"))
    fh.setLevel(logging.INFO)
    logger.addHandler(fh)

    ch = logging.StreamHandler(sys.stdout)
    ch.setLevel(logging.INFO)
    ch.setFormatter(logging.Formatter(fmt="%(asctime)s: %(message)s"))
    logger.addHandler(ch)

    logger.setLevel(logging.INFO)
    return logger

logger = get_logger("log.txt")
logger.info("x")

logger2 = get_logger("log2.txt")
logger2.info("y")

logger.info("z")

print(id(logger), id(logger2))

argparse

import argparse
# 若不传某个参数一般情况下为None, 若default被指定, 则为default的值(nargs为"?"时为const的值)
parser = argparse.ArgumentParser()

# --base 1 表示base=1,不传表示base=21
parser.add_argument("-b", "--base", type=int, default=21)

#  --op1 表示op1=2,不传表示op1=None,--op1 20 表示op1=20
# 当nargs指定为"?"时, 默认值用const参数进行指定而非default参数
parser.add_argument("--op1", type=int, nargs="?", const=2)
# nargs取值可以为整数/"?"/"*"/"+", 分别表示传入固定数量的参数,传入0/1个参数,传入0个或多个参数,传入1个或多个参数

# --a 表示a=True,不传表示a=False
parser.add_argument("--a", action="store_true")
# 更一般的,可以自定义一个类继承argparse.Action类,然后将这个自定义类名传入action

# 以下表示--use-a与--use-b至多只能选择一个
group = parser.add_mutually_exclusive_group()
group.add_argument("--use-a", action="store_true", default=False)
group.add_argument("--use-b", action="store_true", default=False)

args = parser.parse_args()
>>> parser = argparse.ArgumentParser(prog='PROG')
>>> parser.add_argument('-bacon')
>>> parser.add_argument('-badger')
>>> parser.parse_args('-bac MMM'.split())
Namespace(bacon='MMM', badger=None)
>>> parser.parse_args('-bad WOOD'.split())
Namespace(bacon=None, badger='WOOD')
>>> parser.parse_args('-ba BA'.split())
usage: PROG [-h] [-bacon BACON] [-badger BADGER]
PROG: error: ambiguous option: -ba could match -badger, -bacon

有些情况下,可以只解析一部分的命令行参数,而其余参数用其他逻辑进行处理,此时可以使用 parse_known_args 函数。备注:parse_known_args 函数也适用于 prefix-match 规则。

# test.py
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', type=str, required=True)
args, unknown_args = parser.parse_known_args()
# python test.py -c a.py -d cpu
# args: Namespace(config='a.py'), unknown_args=['-d', 'cpu']

许多工具会包含许多子命令, 例如: git add, git commit, git push, 其中: add/commit/push 都是子命令, argparse 包也能做到这一点:

# xx.py
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--foo', action='store_true', help='command help')
subparsers = parser.add_subparsers(help='sub-command help')

# create the parser for the "add" command
parser_a = subparsers.add_parser('add', help='add help')
parser_a.add_argument('bar', type=int, help='python xx.py add <filename>')

# create the parser for the "rm" command
parser_b = subparsers.add_parser('rm', help='rm help')
parser_b.add_argument('--filename', help='python xx.py rm --filename <filename>')

# parse some argument lists
print(parser.parse_args(['add', '12']))
# Namespace(bar=12, foo=False)
print(parser.parse_args(['--foo', 'rm', '--filename', 'Z']))
# Namespace(filename='Z', foo=True)

# 注意: --foo 必须出现在子命令之前
args = parser.parse_args()
# Usage: python xx.py [-h] [--foo] {add,rm} ...
print(args)

os

# 求相对路径
os.path.relpath("./data/a/b/c.txt", "./data/a")  # b/c.txt
os.path.splitext("a/b/c.txt")  # ('a/b/c', '.txt')
os.path.expanduser("~/../a.txt")  # /home/username/../a.txt
# abspath与realpath都不会处理~, realpath会返回软连接指向的位置, abspath只会返回软连接
os.path.abspath("~/a.txt")  # /home/username/temp/~/a.txt
os.path.abspath(os.path.expanduser("~/a.txt"))  # /home/username/a.txt
os.path.realpath(os.path.expanduser("~/a.link"))  # /home/username/a.txt

# 最为标准的用法
os.path.abspath(os.path.realpath(os.path.expanduser("~/a.link")))

io

open 函数的 mode 参数: r+b 表示可读可写(但只要调用了write, 原本的数据就会被覆盖掉)

read

peek

# https://stackoverflow.com/questions/24474687/io-bufferedreader-peek-function-returning-all-the-text-in-the-buffer
# xyz.txt 的文件内容为: first\nsecond
stream = io.BufferedReader(io.FileIO('xyz.txt'), buffer_size=4)
stream.peek(8)  # b'firs'  # buffer中一共4个字节, 当前文件指针在初始位置0, peek 读取从文件指针到缓冲区结束的内容, 但不移动文件指针
stream.read(3)  # b'fir'   # buffer中一共4个字节, 当前文件指针在初始位置0, read 读取3个字节后把指针位置往后挪至3
stream.peek(8)  # b's'     # buffer中一共4个字节, 当前文件指针在3, peek 读取从文件指针到缓冲区结束的内容, 但不移动文件指针, 因此只读1个字节
stream.read(1)  # b's'     # buffer中一共4个字节, 当前文件指针在3, read 读取1个字节后把指针挪至4, 此时缓冲区被刷新为新的4个字节
stream.peek(8)  # b't\nse' # buffer中一共4个字节, 当前文件指针在4, peek 读取从文件指针到缓冲区结束的内容, 但不移动文件指针, 因此读4个字节
# 总之, peek 方法可能获取的字节数多于或少于制定的参数, 取决于 buffer 大小以及当前文件指针的位置
stream.peek(num)[:num]  # 保证最多获取 num 个字节

seek

stream.read(3)
# 定义的常量:  os.SEEK_SET: 0, os.SEEK_CUR: 1, os.SEEK_END: 2
stream.seek(2, 1)  # 返回 3+2=5

collections

defaultdict

递归定义 defaultdict: 参考 (stackoverflow)[https://stackoverflow.com/questions/20428636/how-to-convert-defaultdict-to-dict]

from collections import defaultdict
recurddict = lambda: defaultdict(recurddict)
data = recurddict()
data["hello"] = "world"
data["good"]["day"] = True

OrderedDict

from collections import OrderedDict
d = OrderedDict({"a": 1, "b": 2, "c": 3, "d": 4})
d.move_to_end("b")
print(d)  # OrderedDict([('a', 1), ('c', 3), ('d', 4), ('b', 2)])

typing【涉及到generic看不懂】

typing 模块用于注解, 这些注解在运行时不起作用, 只适用于 mypy 工具做静态检查, 也方便读者阅读

看不懂的地方大概有这么几处:

  • typing.TypeVar, typing.NewType

  • typing.Generic 类

  • python type 关键字

Tuple

  • Tuple:元组类型

  • Tuple[int, str]:第一个元素为整数,第二个元素类型为字符串

  • Tuple[int, ...]:若干个整数

  • Tuple[Any, ...]:等价于 Tuple

Optional

Optional[Sized] 等同于 Union[Sized, None]。

Sized

Sized 表示有一个具有 __len__ 方法的对象,

from typing import Optional, Sized
def foo(a: Optional[Sized]):
	pass

Callable

  • Callable[[int], str]:输入是 int 类型,输出是 str 类型的函数

  • Callable[..., str]:输出是 str 类型的函数,对输入不加约束

TypeAlias, NewType, TypeVar

TypeAlias

# 以下三种写法等价: TypeAlias
from typing import TypeAlias
# Vector 与 list[float] 等同
type Vector = list[float]  # Python 3.12 引入的关键字 type
Vector = list[float]
Vector: TypeAlias = list[float]  # 推荐写法, 兼容性好

The preferred way to construct a type variable is via the dedicated syntax for generic functions, generic classes, and generic type aliases

from typing import TypeVar
T = TypeVar('T')  # Can be anything
S = TypeVar('S', bound=str)  # Can be any subtype of str
A = TypeVar('A', str, bytes)  # Must be exactly str or bytes

def foo(arg: T) -> T:
    return arg

NewType

from typing import NewType
UserID = NewType("UserID", int)  # Python 3.10 之前 UserID 是一个函数, 3.10 之后是一个类
def NewType(name, tp):
    def new_type(x):
        return x
    new_type.__name__ = name
    new_type.__supertype__ = tp
    return new_type

__name__ 属性探索:

from typing import TypeVar, NewType
T = TypeVar("T displayname")  # 一般不会让 name="T displayname" 与变量名 T 不一致
T.__name__   # "T displayname"

UserID = NewType("interger displayname", int)
UserID(123)
UserID.__name__  # "interger displayname"

class A:
    pass
A.__name__  # "A"

TypeVar 与 NewType 涉及的 name 参数是字符串类型, 影响的是 __name__ 属性

Generic

继承 Generic, 就可以在类里面使用“模板类型”

from typing import Dict, Generic, TypeVar

T = TypeVar("T")

class Registry(Generic[T]):
    def __init__(self) -> None:
        self._store: Dict[str, T] = {}
          
    def set_item(self, k: str, v: T) -> None:
        self._store[k] = v
    
    def get_item(self, k: str) -> T:
        return self._store[k]
  
if __name__ == "__main__":
    family_name_reg = Registry[str]()
    family_age_reg = Registry[int]()
    
    family_name_reg.set_item("husband", "steve")
    family_name_reg.set_item("dad", "john")
    
    family_age_reg.set_item("steve", 30)

还存在一个疑问:

这个例子有些看不懂, 起源是 openai==1.1.1 python 包:

from openai import Client, OpenAI
client = OpenAI(
    # defaults to os.environ.get("OPENAI_API_KEY")
)
client.models.list().__class__.__mro__

结果是

(openai.pagination.SyncPage[Model],
 openai.pagination.SyncPage,
 openai._base_client.BaseSyncPage,
 openai._base_client.BasePage,
 openai._models.GenericModel,
 openai._compat.GenericModel,
 openai._models.BaseModel,
 pydantic.main.BaseModel,
 typing.Generic,
 object)

于是写了个测试例子

import pydantic
from openai._models import BaseModel

ModelT = TypeVar("ModelT", bound=pydantic.BaseModel)
class Page(BaseModel, Generic[ModelT]):
    page: int
p = Page[pydantic.BaseModel].model_validate({"page": 10})
print(p.__class__.__mro__)

输出:

(__main__.Page[BaseModel],
 __main__.Page,
 openai._models.BaseModel,
 pydantic.main.BaseModel,
 typing.Generic,
 object)

overload

from typing import overload
# 注意: 此处的...是语法
@overload
def foo(name: str) -> str:
	...
@overload
def foo(name: float) -> str:
	...
@overload
def foo(name: int, age: int) -> str:
	...
def foo(name, age=18):
    return "hello" + str(n)

Protocol

python 3.8 新特性, 相当于 Java 的 Interface

from typing import Protocol

# 定义 Protocol
class MyProtocol(Protocol):
    def method1(self, x: int) -> str:
        ...
    def method2(self, y: str) -> None:
        ...

# 实现 Protocol 的类型
class MyClass:
    def method1(self, x: int) -> str:
        return str(x)
    def method2(self, y: str) -> None:
        print(y)

# 使用 Protocol 作为 type hint
def process(obj: MyProtocol) -> None:
    obj.method2(obj.method1(42))

typing.cast

x = 1
typing.cast(str, x)  # 运行时依旧是整数1, 但mypy检查时认为它是字符串

IO

# 一般用于带有 read, write 等方法的变量
from typing import IO, TextIO, BinaryIO

fr: TextIO = open("x.txt", "rt")
fr: BinaryIO = open("x.pdf", "rt")
fr: IO = open("x")  # 不确定是 binary 还是 text 时可以用更一般的 typing.IO

enum

枚举类型

from enum import Enum
class MyEnum(Enum):
    A = "a"
    B = "b"

# 得到一个枚举类型的实例有几种办法
x = MyEnum.A
y = MyEnum("a")
z = MyEnum["A"]

(x is y) and (y is z)  # True
x == "a"  # False

# 列举所有的取值
for key, value in MyEnum.__members__.items():
    # key分别为["A", "B"]
    # value分别为[MyEnum.A, MyEnum.B]
    ...

dataclasses (python>=3.7 才可用)

This module provides a decorator and functions for automatically adding generated special methods such as init() and repr() to user-defined classes

主要的接口为:

  • dataclasses.dataclass

  • dataclasses.field

dataclasses.dataclass 的简单用法如下:

# 备注: dataclass实际上有很多参数, 例如此处指定fronzen=True, 则初始化后不能再修改数据
@dataclass(frozen=True, eq=True)
class A:
    x: int  # 这里的类型注解是语法强制的, 但运行时不做类型检查
    y: float
    z: str
    def foo(self):
        return self.x * self.y
# A.__init__函数自动生成
a = A(1.0, 2, "x")  # 注意: 此处实际上不会做类型检查
a.foo()
a.x = 3  # 报错

备注:dataclass 还会自动生成 __eq__ 等函数, 也可以设定 eq=False 抑制这一行为

field 的简单用法如下:

@dataclass()
class A:
    # y: list[int] = list()  # 会发生意料不到的情况
    y: list[int] = field(default_factory=list)

a = A()
a.y.append(2)

b = A()
b.y.append(3)

A().y  # 此时会返回[], 但如果不用field函数直接写默认值为list(), 则此时返回为[2, 3]

更为深入的细节查阅官方文档:

  • 如果 dataclass 装饰的类发生继承关系时, 自动生成的 __init__ 函数的参数顺序一般来说是先父类, 再子类。但还有许多微妙之处

  • 将 dataclass 中的一些 field 仅作为关键字参数如何处理

unicodedata

unicode 编码的目的是攘括所有的字符,然而它本身也有版本号, python 的每个版本所支持的 unicode 版本号也不相同, 例如:

  • U+0025: %, name 为 PERCENT SIGN

  • U+0B90: ஐ, name 为 TAMIL LETTER AI

而在编码界,需要区分编码方式与实现方式,上面所讲的 Unicode 属于编码方式的范畴,即规定了字符集。而从实现方式的角度,需要将每个字符映射为一个具体的二进制表示。一个自然的方式是将所有的字符按照 Unicode 的定义方式表示为 6 位 16 进制数,但实际上为了省空间,普遍采用的 Unicode 实现方式为 utf-8、utf-16 等,其中最通用的是 utf-8,而 utf-8 具体的字符与字节的对应关系此处不再做展开。

这里简要举一些 unicodedata 的使用例子,更多复杂的内容请参考维基

import unicodedata
c = "ஐ"
i = ord(c)  # 字符 c 的 unicode 码位, 结果为: 2960 = 0x0B90 = 11*16*16+9*16
c.encode("utf-8")  # 编码为 "utf-8" 时的实际字节表示: b'\xe0\xae\x90',可以看出utf-8实现中用了3个字节
print("\\u{i:>04x}")  # \\u0b90
unicodedata.name(c)  # 返回字符的名字: "TAMIL LETTER AI"
unicodedata.category(c)  # 字符的类别
unicodedata.normalize('NFC', '\u0043\u0327')  # 使用 NFC 的转换方式将 C 和一个类似逗号的符号合成为 1 个符号,见备注
unicodedata.is_normalized('NFC', '\u0043\u0327')  # False,因为这两个字符可以合并为一个字符,见备注
unicodedata.unidata_version  # unicode data 的版本:'13.0.0', 不同python版本返回值不一样

备注:

  • 字符 normalize,有几种转换方式:NFC、NFD、NFKC、NFKD。例如有些字符有多种表示:U+00C7 (LATIN CAPITAL LETTER C WITH CEDILLA,形状为字母C下面有个类似逗号的符号) 也可以被表示为 U+0043 (LATIN CAPITAL LETTER C,字母C) U+0327 (COMBINING CEDILLA,类似于一个逗号的符号).

subprocess (待补充)

  • subprocess 模块的作用是运行命令行可以执行的命令

  • multiprocessing 模块的典型用法是用多进程执行同一个python 代码

subprocess.run

# 函数原型
subprocess.run(args, *, stdin=None, input=None, stdout=None, stderr=None, capture_output=False, shell=False, cwd=None, timeout=None, check=False, encoding=None, errors=None, text=None, env=None, universal_newlines=None, **other_popen_kwargs)
import subprocess
cmd = ["dir"]
subprocess.run(cmd)  # 报错: FileNotFoundError: [WinError 2] 系统找不到指定的文件。
subprocess.run(cmd, shell=True)  #正常运行

其中shell参数的默认值为,shell=True表示"命令"(可能用词不准确)在shell中执行, 文档中说除非必要, 否则不要设置为True. 注意: 在window下, 上述情况需设置为True, 主要原因是windows下echo不是一个可执行文件, 而是cmd中的一个命令.

  • 一个在windows环境变量PATH目录下的可执行文件(以.exe结尾), 可以通过win+R组合键后敲入文件名进行执行; 而echo在windows下不是一个自带的可执行文件, 而是cmd窗口中的一个内置命令.

  • windows下cmd是一个shell, 而平时所说的dos是一种操作系统的名字, 而dos命令是这个操作系统中的命令. cmd窗口下的能执行的命令与dos命令有许多重叠之处, 但不能混为一谈.

  • 所谓shell, 这是一个操作系统中的概念, 不同的操作系统有不同的shell, 常见的有: windows下的cmd(命令行shell), powershell(命令行shell), windows terminal(命令行shell), 文件资源管理器(图形化shell); linux下的bash(命令行shell, 全称: Bourne Again shell), shell是一种脚本语言.

subprocess.check_output

用于执行脚本得到输出结果

import subprocess
output = subprocess.check_output(["echo", "abc"], shell = False)
output.decode()

multiprocessing(待补充)

multiprocessing.Process

此为一个相对底层的 API,用于直接创建子进程运行 python 代码。

用法一:使用 multiprocessing.Process创建进程并传入需要运行的 python 函数及实参

# 注意观察注释的两行所起的效果
import time
import multiprocessing
def foo(seconds=2):
    print(f"sleep {seconds}s begin.")
    time.sleep(seconds)
    print(f"sleep {seconds}s end.")

t1 = time.time()
p1 = multiprocessing.Process(target=foo, args=(2,))
p2 = multiprocessing.Process(target=foo, args=(2,))
p1.start()
time.sleep(1)
p2.start()
# p1.join()  # 表示停下来等p1运行完
# p2.join()  # 表示停下来等p2运行完
t2 = time.time()
print("运行时间: ", t2 - t1)

方法二:自己写一个类继承 multiprocessing.Process,示例如下:

import multiprocessing
class MyProcess(multiprocessing.Process):
    def __init__(self, func, args):
        super().__init__()
        self.func = func
        self.args = args
    
    def run(self):
        self.func(self.args)


def foo(x):
    return x

if __name__ == "__main__":
    process = MyProcess(foo, 1)
    process.start()
    process.join()

Pool

import multiprocessing
def func(msg):
    print(multiprocessing.current_process().name + '-' + msg)

pool = multiprocessing.Pool(processes=4) # 创建4个进程
for i in range(10):
    msg = "hello %d" %(i)
    pool.apply_async(func, (msg, ))
pool.close() # 关闭进程池,表示不能在往进程池中添加进程
print(multiprocessing.current_process().name)
pool.join() # 等待进程池中的所有进程执行完毕,必须在close()之后调用
print("Sub-process(es) done.")
<<<输出结果>>>
MainProcess
ForkPoolWorker-1-hello 0
ForkPoolWorker-2-hello 1
ForkPoolWorker-1-hello 4
ForkPoolWorker-3-hello 2
ForkPoolWorker-2-hello 5
ForkPoolWorker-1-hello 6
ForkPoolWorker-4-hello 3
ForkPoolWorker-2-hello 7
ForkPoolWorker-1-hello 8
ForkPoolWorker-2-hello 9
Sub-process(es) done.

multiprocessing.Pool主要有apply, apply_async, close, imap, imap_unordered, join, map, map_async, starmap, starmap_async, terminate

close, join, terminate

close指关闭进程池, 即不再往里面添加新的任务

join指等待进程池内的所有进程完成任务

terminate指立刻中断所有进程的执行

map, map_async, starmap, starmap_async

首先, python中

list(map(lambda x, y: x+y, [1, 2, 3], [1, 2, 3]))
# 输出结果: [2, 4, 6]

list(itertools.starmap(lambda x, y: x+y, [(1, 1), (2, 2), (3, 3)]))
# 输出结果: [2, 4, 6]
# `map`与`map_async`的区别
def foo2(t):
    time.sleep(random.random()*5)
    print(f"got t[0]: {t[0]}, t[1]: {t[1]}, pid: {os.getpid()}, name: {multiprocessing.current_process().name}")
    return t[0] + (t[1] - 5)

def test_map():
    result = pool.map(foo2, ls)
    # 主进程还要干别的事
    time.sleep(7)
    print(result)

def test_map_async():
    result = pool.map_async(foo2, ls)
    # 主进程还要干别的事
    time.sleep(7)
    pool.close()
    pool.join()
    print(result.get())

if __name__ == "__main__":
    start = time.time()
    pool = multiprocessing.Pool(3)
    # print(pool._pool)
    ls = [(i, i) for i in range(10)]
    ls1 = list(range(10))
    ls2 = list(range(10))
    test_map()  # 17s左右
    # test_map_async()  # 9秒左右
    end = time.time()
    print(end-start)

map, apply, imap, imap_unodered

multi-args
Concurrence
Blocking
Ordered-results

map

no

yes

yes

yes

map_async

no

yes

no

yes

apply

yes

no

yes

no

apply_async

yes

yes

no

no

concurrence指的是子进程之间能否并发执行, blocking指的是是否阻塞主进程的执行.

最常用的是map, 非特殊情况其他不要尝试, 简单的示例如下, 但推荐使用with语句

from multiprocessing import Pool

def f(x):
    return x*x

if __name__ == '__main__':
    with Pool(5) as p:
        print(p.map(f, [1, 2, 3]))
import time
import random
import multiprocessing
random.seed(1)
# seconds = [random.random()*5 for i in range(10)]
# print(f"seconds: {[round(_, 2) for _ in seconds]}")
# print(f"total time: {sum(seconds): .2f}")
# seconds: [0.67, 4.24, 3.82, 1.28, 2.48, 2.25, 3.26, 3.94, 0.47, 0.14]
# total time:  22.54

def print_func(f):
    def wrapper(*args, **kwargs):
        print(f.__name__)
        return f(*args, **kwargs)
    return wrapper

def foo(x, y):
    time.sleep(random.random()*5)
    print(f"got x: {x}, y: {y}, pid: {os.getpid()}, name: {multiprocessing.current_process().name}")
    return x + (y - 5)

def foo2(t):
    time.sleep(random.random()*5)
    print(f"got t[0]: {t[0]}, t[1]: {t[1]}, pid: {os.getpid()}, name: {multiprocessing.current_process().name}")
    return t[0] + (t[1] - 5)

def bar(e):
    print("Some error happend!")
    print(e)
    return 1000

@print_func
def test_map():
    result = pool.map(foo2, ls)
    print(result)

@print_func
def test_map_async():
    result = pool.map_async(foo2, ls, callback=bar)
    pool.close()
    pool.join()
    print(result.get())

@print_func
def test_apply_async():
    result = []
    for _ in ls:
        result.append(pool.apply_async(foo, _))
    pool.close()
    pool.join()
    result = [_.get() for _ in result]
    print(result)

@print_func
def test_apply():
    result = []
    for _ in ls:
        result.append(pool.apply(foo, _))
    pool.close()
    pool.join()
    print(result)


if __name__ == "__main__":
    start = time.time()
    pool = multiprocessing.Pool(3)
    # print(pool._pool)
    ls = [(i, i) for i in range(10)]
    ls1 = list(range(10))
    ls2 = list(range(10))
    # test_map()
    test_map_async()
    # test_apply()
    # test_apply_async()
    end = time.time()
    print(end-start)

Queue、Pipe

其他一些与进程, cpu相关的测试代码:

import time
import os
import multiprocessing

# 片段1
def foo(seconds=2):
    print(f"sleep {seconds}s begin.")
    time.sleep(seconds)
    print(f"sleep {seconds}s end.")

t1 = time.time()
p1 = multiprocessing.Process(target=foo, args=(2,))
p2 = multiprocessing.Process(target=foo, args=(2,))
p1.start()
time.sleep(1)
p2.start()
p1.join()
p2.join()
t2 = time.time()
print("运行时间: ", t2 - t1)

# 片段2
def func(msg):
    print(multiprocessing.current_process().name + '-' + msg)

pool = multiprocessing.Pool(processes=4) # 创建4个进程
for i in range(6):
    msg = "hello %d" %(i)
    pool.apply_async(func, (msg, ))
pool.close() # 关闭进程池,表示不能在往进程池中添加进程
print(multiprocessing.current_process().name)
pool.join() # 等待进程池中的所有进程执行完毕,必须在close()之后调用
print("Sub-process(es) done.")

# 片段3
print('Process (%s) start...' % os.getpid())
# Only works on Unix/Linux/Mac:
pid = os.fork()
print(pid)
if pid == 0:
    print('I am child process (%s) and my parent is %s.' % (os.getpid(), os.getppid()))
    time.sleep(3)
else:
    print('I (%s) just created a child process (%s).' % (os.getpid(), pid))
    time.sleep(3)

# 片段4
from multiprocessing import Pool
import os, time, random

def long_time_task(name):
    print('Run task %s (%s)...' % (name, os.getpid()))
    start = time.time()
    time.sleep(random.random() * 3)
    end = time.time()
    print('Task %s runs %0.2f seconds.' % (name, (end - start)))

print('Parent process %s.' % os.getpid())
p = Pool(None)
for i in range(9):
    p.apply_async(long_time_task, args=(i,))
print('Waiting for all subprocesses done...')
p.close()
p.join()
print('All subprocesses done.')

# 片段5
import subprocess

print('$ nslookup www.python.org')
r = subprocess.call(['nslookup', 'www.python.org'])
print('Exit code:', r)

# 片段6
print('$ nslookup')
p = subprocess.Popen(['nslookup'], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
p1 = multiprocessing.Process(target=foo, args=(2,))
print(type(p), type(p1))
output, err = p.communicate(b'set q=mx\npython.org\nexit\n')
print(output.decode('utf-8'))
print('Exit code:', p.returncode)

# 片段7
from multiprocessing import Process, Queue
import os, time, random

# 写数据进程执行的代码:
def write(q):
    print('Process to write: %s' % os.getpid())
    for value in ['A', 'B', 'C']:
        print('Put %s to queue...' % value)
        q.put(value)
        time.sleep(random.random())

# 读数据进程执行的代码:
def read(q):
    print('Process to read: %s' % os.getpid())
    while True:
        value = q.get(True)
        print('Get %s from queue.' % value)

if __name__=='__main__':
    # 父进程创建Queue,并传给各个子进程:
    q = Queue()
    pw = Process(target=write, args=(q,))
    pr = Process(target=read, args=(q,))
    # 启动子进程pw,写入:
    pw.start()
    # 启动子进程pr,读取:
    pr.start()
    # 等待pw结束:
    pw.join()
    # pr进程里是死循环,无法等待其结束,只能强行终止:
    pr.terminate()

# 片段8
>>> import psutil
>>> psutil.pids() # 所有进程ID
[3865, 3864, 3863, 3856, 3855, 3853, 3776, ..., 45, 44, 1, 0]
>>> p = psutil.Process(3776) # 获取指定进程ID=3776,其实就是当前Python交互环境
>>> p.name() # 进程名称
'python3.6'
>>> p.exe() # 进程exe路径
'/Users/michael/anaconda3/bin/python3.6'
>>> p.cwd() # 进程工作目录
'/Users/michael'
>>> p.cmdline() # 进程启动的命令行
['python3']
>>> p.ppid() # 父进程ID
3765
>>> p.parent() # 父进程
<psutil.Process(pid=3765, name='bash') at 4503144040>
>>> p.children() # 子进程列表
[]
>>> p.status() # 进程状态
'running'
>>> p.username() # 进程用户名
'michael'
>>> p.create_time() # 进程创建时间
1511052731.120333
>>> p.terminal() # 进程终端
'/dev/ttys002'
>>> p.cpu_times() # 进程使用的CPU时间
pcputimes(user=0.081150144, system=0.053269812, children_user=0.0, children_system=0.0)
>>> p.memory_info() # 进程使用的内存
pmem(rss=8310784, vms=2481725440, pfaults=3207, pageins=18)
>>> p.open_files() # 进程打开的文件
[]
>>> p.connections() # 进程相关网络连接
[]
>>> p.num_threads() # 进程的线程数量
1
>>> p.threads() # 所有线程信息
[pthread(id=1, user_time=0.090318, system_time=0.062736)]
>>> p.environ() # 进程环境变量
{'SHELL': '/bin/bash', 'PATH': '/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:...', 'PWD': '/Users/michael', 'LANG': 'zh_CN.UTF-8', ...}
>>> p.terminate() # 结束进程
Terminated: 15 <-- 自己把自己结束了

concurrent.futures

concurrent.futures的主要作用是创建异步的线程/进程池。主要的类为 concurrent.futures.Excutor(异步调用), ThreadPoolExecutor(异步线程池), ProcessPoolExecutor(异步进程池)

并发执行

python 中涉及关于并发执行的包及主要的类/方法有如下

  • threading: threading.Thread, threading.Pool, threading.Queue

  • multiprocessing: multiprocessing.Process, multiprocessing.Pool, multiprocessing.Queue

  • concurrent: concurrent.futures.Excutor, concurrent.futures.ThreadPoolExecutor, concurrent.futures.ProcessPoolExecutor

  • subprocess: subprocess.call

  • queue: queue.Queue

此处有多个疑问:

  • concurrent.futures.ProcessPoolExecutor 与 multiprocessing.Pool 之间的区别(待补充)

  • queue.Queue 与 multiprocessing.Queue 之间的区别(待补充)

例子1: 使用concurrent.futures完成子任务异步调用

from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
import random
import time
import threading

def foo(uniq_id, data):
    secs = random.random()*2
    time.sleep(secs)
    print(f"{uniq_id}, foo sleep, {secs:.2f}")
    res = {"data_foo": data["data"] + 10}
    return uniq_id, res

def bar(uniq_id, data):
    secs = random.random()
    time.sleep(secs)
    print(f"{uniq_id}, bar sleep, {secs:.2f}")
    res = {"data_bar": data["data"] + 100}
    return uniq_id, res

class Scheduler:
    def __init__(self, names, funcs, pools):
        self.names = names
        self.funcs = funcs
        self.pools = pools
        self.num_executors = len(funcs)


def do_task(uniq_id, data):
    task_results = []
    futures = []
    time.sleep(random.random())
    for i in range(scheduler.num_executors):
        time.sleep(random.random())
        futures.append(scheduler.pools[i].submit(scheduler.funcs[i], uniq_id, data))
    for i in range(scheduler.num_executors):
        time.sleep(random.random())
        task_results.append(futures[i].result()[1])
    result = dict()
    for task_result in task_results:
        result.update(task_result)
    print("处理完毕", uniq_id, data, result)
    return uniq_id, data, result

if __name__ == "__main__":
    scheduler = Scheduler(
        names=["foo", "bar"],
        funcs=[foo, bar],
        pools=[ProcessPoolExecutor(2), ProcessPoolExecutor(2)]
    )


    # 模拟并发请求
    n = 4
    threads = []
    for i in range(n):
        t = threading.Thread(target=do_task, args=(i, {"data": i}))
        t.setDaemon(True)
        threads.append(t)

    for t in threads:
        t.start()

    for t in threads:
        t.join()

例子2: 多个进程修改变量

from concurrent.futures import ProcessPoolExecutor
from multiprocessing import Manager
import time
import os

def foo(x, data):
    data.append(x)
    print(x, "Done", id(data), data, os.getpid())

class A:
    def __init__(self):
        self.data = Manager().list()  # 如果是普通的列表, 则self.data将不会被修改
        self.executor = ProcessPoolExecutor(1)
        

    def process(self, i):
        self.executor.submit(foo, i, self.data)  # submit 返回 future 对象

if __name__ == "__main__":
    print(os.getpid())
    a = A()
    a.process(1)
    a.process(2)
    time.sleep(0.2)  # 这里不严谨, 应该用 future 对象, 确保执行完毕
    print(a.data)

re、glob

此部分微妙处比较多, 许多符号例如?有着多种含义, 需仔细校对

pattern的写法

参考

示例里pattern的首位两个正斜杠不是正则表达式的一部分, 示例中所谓的匹配实际上对应的是re.search方法, 意思是存在子串能符合所定义的模式, 以下是python中re模块在单行贪婪模式, 更细节的内容参见后面.

写法
含义
备注
示例

^

匹配开头

/^abc/可以匹配abcd, 但不能匹配dabc

$

匹配结尾

/abd$/可以匹配cabc, 但不能匹配abcc

.

匹配任意单个字符

单行模式下不能匹配

/a.v/可以匹配acv, 但不可以匹配av

[...]

匹配中括号中任意一个字符

大多数特殊字符^, ., *, (, {均无需使用反斜杠转义, 但存在例外(其实还不少), 例如: [与\需要用反斜杠转义

/[.\["]/表示匹配如下三个字符: ., [, "

[^...]

匹配不在中括号中的任意一个字符

*

匹配任意个字符

{m,n}

匹配前一个字符[m,n]次

+

匹配前一个字符至少1次

?

匹配前一个字符一次或零次

`

`

或

备注:

  • 正则表达式中特有的符号.*+[]^$()|{}?, 如果需要表达它们自身, 一般需要转义. 另外, 有以下几个常用的转义字符:

    转义写法
    备注

    \b

    匹配数字/下划线/字母(沿用计算机语言中_word_的概念)

    \B

  • 贪婪匹配与非贪婪匹配

    *, +, ?, {m, n}, {m,}, {,n}均为贪婪模式, 表示尽量匹配更长的字符串, 例如/t*/匹配ttT中的tt. 相反地, 在上述符号后添加?后变为非贪婪模式, 表示匹配尽量短的匹配字符串. 有一个特别的例子如下:

    # 可以认为原字符串被填补为了 '\0t\0T\0a\0' ?
    re.findall("[tT]*?", "tTa")
    # 输出: ['', 't', '', 'T', '', '']
  • [...]形式的pattern存在较多特殊情况

    • /[tT]*/可以匹配tTt, 即不需要是重复地若干个t或者若干个T. 类似地/[tT]{2}/也可以匹配tT.

    • 如果需要匹配\, 则需要使用反斜杠将其转义, 例如: /[\\a]/表示匹配\或者a.

    • /[a-z]/这种表示是前闭后闭区间(首尾的两个字符都含在匹配范围内), 并且必须按照Unicode的顺序前小后大(见后文).

    • [与]不需要进行转义, 如果需要匹配]那么]必须放在开头, 例如/[]a]/表示匹配]或者a. 但当采用非的语义时, ]应该放在^后面的第一个位置, 例如/[^]a]/表示不匹配]及a.

    • 如果需要匹配-, 可以将-放在开头或结尾, 或者是用\-进行转义.

    • -与]混合的情形, 例子: /[-]]/表示匹配-], /[]-]/表示匹配]或者-.

    • ^字符无需进行转义, 如果需要匹配^, 那么要避免将^放在第一个位置即可. 例如: /[1^]/表示匹配1或者^.

    • 还有更多规则...

  • [], {}, ()的嵌套问题, 根据目前所知, 一般不能多层嵌套, 具体地, ()内[]和{}可以正常使用, 这是因为圆括号只是标记一个范围, 而[]与{}内部不能嵌套三种括号. 例如: /([tT]he)/及/([tT]{2})/是合法的pattern.

  • /\1/这种以反斜杠开头加上数字的表示法表示匹配与上一个圆括号块完全相同的字符串, 标号从1开始, (?:)这种写法用于取消当前块的标号

  • (?=), (?!)被称为Lookahead Assertions, 表示匹配字符但不消耗, 例子/[A-Za-z]{2}(?!c)/可以匹配bag, 最终获取到ba

    re.findall("[A-Za-z]{2}(?!c)", "bag") # ["ba"]

    (?<=), (?<!)与上两者类似, 但匹配的是前面的字符

常用函数

更多说明

贪婪/非贪婪, 单行/多行匹配模式

正则表达式也可以用于字节流的匹配

一些骚操作

import re
inputStr = "hello crifan, nihao crifan";
replacedStr = re.sub(r"(hello )(\w+)(, nihao )(\2)", r"\1crifanli\3\4", inputStr)
replacedStr
# 测试
x = "a  # SyntaxError: EOL while scanning string literal
x = r"\"  # SyntaxError: EOL while scanning string literal
# 如果希望使用raw string但结尾有单个反斜杠的解决方法
x = r"a\cc" + "\\"  # 表示a\cc\

样例

"(.)\1{2}"  # 用于匹配一个字符3次, 例如:AAA, 注意不能使用(.){3}或.{3}

python re模块的实现

使用一个东西, 却不明白它的道理, 不高明

linux下的通配符(glob)

通配符又叫做 globbing patterns。因为 Unix 早期有一个/etc/glob文件保存通配符模板,后来 Bash 内置了这个功能,但是这个名字被保留了下来。通配符早于正则表达式出现,可以看作是原始的正则表达式。它的功能没有正则那么强大灵活,但是胜在简单和方便。

?表示单个字符, *代表任意数量个字符, [abc]表示方括号内任意一个字符, [a-z]表示一个连续的范围, [^abc]或[!abc]或[^a-c]或[!a-c]表示排除方括号内的字符

{abc,def}表示多字符版本的方括号, 匹配任意abc或def, 中间用逗号隔开, 大括号可以嵌套, 例如{j{p,pe}g}表示jpg或jpeg.

{11..13}表示11或12或13, 但如果无法解释时, 例如: {1a..1c}则模式会原样保留.

注意点: *不能匹配/, 所以经常会出现a/*.pdf这种写法

ctypes

ctypes的代码运行效率不如cython

1. C/C++程序的编译

2. 使用ctypes

以下仅为tutorial(可能理解不准确)

2.1 调用动态链接库

// adder.c, 将其编译为adder.so
// gcc -shared -o adder.so -fPIC adder.c
int add_int(int num1, int num2){return num1 + num2;}
float add_float(float num1, float num2){return num1 + num2;}
import ctypes
adder = ctypes.CDLL('./adder.so')  # load the shared object file
res_int = adder.add_int(4, 5)  # Find sum of integers
print("Sum of 4 and 5 = " + str(res_int))

# 注意, 以下用法能确保不出错
p_a, p_b = 5.5, 4.1  # Find sum of floats
c_a, c_b = ctypes.c_float(p_a), ctypes.c_float(p_b)
add_float = adder.add_float
add_float.restype = ctypes.c_float
res = add_float(c_a, c_b)
print("Sum of 5.5 and 4.1 = ", str(res))

解释: 由于python与c两种语言在数据结构上有着明显的不同, 因此利用ctypes调用C代码时需要进行相应的类型转换: 以上述的add_float为例, python中浮点数都是双精度的(不妨记为Python-double). 而adder.c函数参数都是单精度的, 不妨记为C-float, 可以将调用过程细化为几步

  • python数据类型转换为c数据类型: p_a -> c_a, p_b-> c_b

  • c代码调用并返回

  • python将c代码返回的结果转换为python类型

为了使用add_float(1.0, 2.0)这种形式进行调用, 必须将1.0转换为适应c的数据形式(add_float.argtypes), 对于返回值, 同样道理, 也应指定返回时c->python的转换(add_float.restype)

add_float = adder.add_float
add_float.argtypes = [ctypes.c_float, ctypes.c_float]
add_float.restype = ctypes.c_float
print(add_float(1.0, 2.0))  # ok
print(add_float(ctypes.c_float(1.0), ctypes.c_float(2.0)))  # ok
add_float = adder.add_float
# add_float.argtypes = [ctypes.c_float, ctypes.c_float]
add_float.restype = ctypes.c_float
print(add_float(1.0, 2.0))  # error
print(add_float(ctypes.c_float(1.0), ctypes.c_float(2.0)))  # ok
add_float = adder.add_float
add_float.argtypes = [ctypes.c_float, ctypes.c_float]
# add_float.restype = ctypes.c_float
print(add_float(1.0, 2.0))  # error
print(add_float(ctypes.c_float(1.0), ctypes.c_float(2.0)))  # error

经过一番探索后发现, 最好还是指定argtypes与restype, 前者也许可以不指定, 后者必须指定, 并且不要试图理解不指定restype时的结果, 大概是implement dependent的东西, 似乎也不能直接用IEEE 754浮点数表示法进行解释. 大约是: 不指定restype时默认是c_int, 深入到底层时, 应该是C端传回了一些字节, Python端将其解读为int, 但不能用同样的比特流解读为浮点型? (不要深究: ctypes用了cpython安装时的一些东西, 注意: cpython是python的一种实现, 也是最普遍的实现, 与cython是不同的东西)

2.2 类似于cython的方式

ctypes也支持直接用python代码写C代码? 但效率不如cython

import ctypes
import ctypes.util
from ctypes import c_int, POINTER, CFUNCTYPE, sizeof
# 如果在linux上, 则将"msvcrt"改为"c"即可
path_libc = ctypes.util.find_library("msvcrt")
libc = ctypes.CDLL(path_libc)
IntArray5 = c_int * 5
ia = IntArray5(5, 1, 7, 33, 99)
qsort = libc.qsort
qsort.restype = None

CMPFUNC = CFUNCTYPE(c_int, POINTER(c_int), POINTER(c_int))

def py_cmp_func(a, b):
    print("py_cmp_func", a[0], b[0])
    return a[0] - b[0]

cmp_func = CMPFUNC(py_cmp_func)
qsort(ia, len(ia), sizeof(c_int), cmp_func)  

for i in ia:
    print(i, end=" ")

3. ctypes官方文档的学习记录

3.1 python类型与c类型的转换

None, int, bytes, (unicode) strings是python中能直接作为C函数参数的数据类型, 其中None代表C中的空指针, bytes与strings作为char *与wchar_t *的指针, int作为C中的int类型, 但注意过大的数字传入C时会被截断. 也就是说上面的restype与argtypes可以不指定仅限于上述几种数据类型.

None, integers, bytes objects and (unicode) strings are the only native Python objects that can directly be used as parameters in these function calls. None is passed as a C NULL pointer, bytes objects and strings are passed as pointer to the memory block that contains their data (char * or wchar_t *). Python integers are passed as the platforms default C int type, their value is masked to fit into the C type.

from ctypes import *
# c_int, c_float是可变的, 这种类型可以改变value
i = c_int(42)  # i: c_long(42)
i.value = -99  # i: c_long(-99)
# 注意python中的int类型对应于c_void_p
# c_char_p, c_wchar_p, c_void_p这几种类型改变value实际上改变的是其指向的地址
s = "Hello World"
c_s = c_wchar_p(s)  # c_s: c_wchar_p(139966222), c_s.value: "Hello World"
c_s.value = "Here"  # c_s: c_wchar_p(222222222), c_s.value: "Here"
print(s)  # "Hello World"
# create_string_buffer=c_buffer=c_string
# create_unicode_buffer

# 如果需要可变的内存块, 则要使用ctypes.create_string_buffer函数, 此函数有多种调用方式
# 如果需要修改, 则对raw属性或者value属性进行修改即可
p = create_string_buffer(3)  # 开辟3字节空间, 并将值初始化为0
print(sizeof(p), repr(p.raw))  # 3, b'\x00\x00\x00'

p = create_string_buffer(b"Hello")  # 开辟6字节空间
# value用于获得去除空字符后的字节流
print(sizeof(p), repr(p.raw), p.value)  # 6, b'Hello\x00', b'Hello'

p = create_string_buffer(b"Hello", 10)
print(sizeof(p), repr(p.raw)) # 10, b'Hello\x00\x00\x00\x00\x00'
>>> printf = libc.printf
>>> printf(b"Hello, %s\n", b"World!")
Hello, World!
14
>>> printf(b"Hello, %S\n", "World!")
Hello, World!
14
>>> printf(b"%d bottles of beer\n", 42)
42 bottles of beer
19
>>> printf(b"%f bottles of beer\n", 42.5)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ArgumentError: argument 2: exceptions.TypeError: Don't know how to convert parameter 2
>>> printf(b"An int %d, a double %f\n", 1234, c_double(3.14))  # 似乎不能用c_float
An int 1234, a double 3.140000
31
>>> # 可能C语言中%f只是用来输出双精度浮点数的?

inspect

inspect.signature

返回函数的特征标(即原型或者说是参数名列表)

inspect.stack

用于返回当前的函数调用栈

inspect.isclass(obj)

用于判断 obj 是否为一个类

输出一个实例的完整类名

import numpy as np
arr = np.array([1, 2])
cls = arr.__class__  # <class numpy.ndarray>
module: str = cls.__module__
name: str = cls.__qualname__  # 优于__name__

inspect.unwrap 用于解除用 functools.wraps 修饰的装饰器

import inspect
from functools import wraps

def test_decorator(func):
    @wraps(func)
    def wrapper(*args, **kwargs):
        print('test_decorator')
        return func(*args, **kwargs)
    return wrapper

@test_decorator
def spam():
    print('spam1', '\n')
spam()
print()
spam = inspect.unwrap(spam)
spam()

weakref

import weakref

class Model:
    def __init__(self):
        self.graph = Graph(weakref.proxy(self))
        # self.graph = Graph(self)

class Graph:
    def __init__(self, model):
        self.model_ref = model

# 创建 Model 实例
model = Model()
graph = model.graph

# 销毁对 Model 实例的强引用
del model

# 尝试访问 Graph 实例中的弱引用
try:
    print(graph.model_ref)
except Exception as e:
    print("Exception:", e)  # 进入此处!

json

import json
dict_json = {'accountID': '123', 'notes': {'sentences color': {1: 50, 0: 50}, 'human color': 2, 'status': '中立'}, 'result': ''}
str_json = json.dumps(dict_json)
print(str_json)
print(json.loads(str_json))
with open("json_format.txt", "w") as fw:
    json.dump(dict_json, fw)
with open("json_format.txt", "r") as fr:
    new_dict = json.load(fr)
print(new_dict)
json.dumps(dict)  # dict->str
json.dump(dict, fw)  # dict->write file
json.loads(str)  # str->dict
json.load(fr)  # read file->dict

asyncio

概念澄清:

  • Asynchronous IO (async IO): 是一个语言无关的模型

  • async/await: 是 Python 的关键字

  • asyncio: 是 Python 的一个标准库

  • coroutine: 在 Python 中是一类特殊的 generator 函数

  • 不是太确定: 在讨论协程时, 普通函数也被称为阻塞型函数 (blocking function), 而使用 async def 定义的函数被称为 coroutine, 也被称为非阻塞型函数 (nonblocking function)

使用示例 (八股文?)

import asyncio
from contextvars import copy_context
from functools import partial

async def afn(x, y):
    return x - y

async def afm(x, y):
    return await asyncio.get_running_loop().run_in_executor(
        None,
        partial(copy_context().run, lambda x, y: x * y, x, y)
    )

async def run_in_executor(
    executor_or_config,
    func,  # func 不是 async 修饰的函数, 即普通函数(或者被称为阻塞型函数或blocking function)
    *args,
    **kwargs,
):
    if executor_or_config is None or isinstance(executor_or_config, dict):
        return await asyncio.get_running_loop().run_in_executor(
            None,
            partial(copy_context().run, func, *args, **kwargs),
        )

    return await asyncio.get_running_loop().run_in_executor(
        executor_or_config, partial(func, **kwargs), *args
    )

def foo(x, y):
    return x + y

async def afoo(x, y):
    return await run_in_executor(
        None, foo, x, y
    )


if __name__ == "__main__":
    res = asyncio.run(afn(1, 2))
    print(res)

    res = asyncio.run(afm(1, 2))
    print(res)

    res = asyncio.run(afoo(1, 2))
    print(res)

asyncio.run(afn()) vs asyncio.get_event_loop().run_until_complete(afn())

两者基本等价? (不确定)

import asyncio

async def main():
    # 可以使用 await, async for 等语法
    ...

asyncio.run(main())
# asyncio.get_event_loop().run_until_complete(main())

源码如下:

# asyncio/runners.py
from . import events
def run(main):
    if events._get_running_loop() is not None:
        raise RuntimeError("asyncio.run() cannot be called from a running event loop")
    loop = get_event_loop_policy().new_event_loop()  # events.new_event_loop()
    get_event_loop_policy().set_event_loop(loop)     # events.set_event_loop(loop)
    return loop.run_until_complete(main)


# asyncio/events.py
def get_event_loop():
    current_loop = _get_running_loop()
    if current_loop is not None:
        return current_loop
    return get_event_loop_policy().get_event_loop()

疑问:

  • asyncio.get_event_loop() vs asyncio.get_running_loop(): 前者通常是在非协程环境中使用, 例如在模块级别. 后者通常是在 async def 的函数体内被使用

  • run_in_executor() vs run_until_complete(): 前者接收的是普通函数, 后者接收的是 async def 的函数

  • return await 是在做什么? 仅仅是省一行代码

    async def example_async_function():
        result = await some_async_operation()
        return result
        # 等价于
        # return await some_async_operation()

await vs create_task (OK)

import asyncio

async def print_something():
    await asyncio.sleep(1)
    print("test")

async def main():
    asyncio.create_task(print_something())
    print("done")


if __name__ == "__main__":
    asyncio.run(main())

首先观察上面代码的几个变体观察执行行为:

# ===== 变体1 =====
async def main():
    asyncio.create_task(print_something())
    print("done")
# 只打印 done

# ===== 变体2 =====
async def main():
    await print_something()
    print("done")
# 先等待1秒, 先打印 test, 然后答应 done

# ===== 变体3 =====
async def print_something():
    print("test")
async def main():
    asyncio.create_task(print_something())
    print("done")
# 只打印 done

# ===== 变体4 =====
async def main():
    task = asyncio.create_task(print_something())
    print("done")
    await task
# 先打印 done, 再等待1秒, 再打印test

create_task 会自动加入事件循环(也就是会择机执行), 但它却不会被等待执行完成, 另外如果这个 task 不被显式地 await, 事件循环结束前也不会等待这些 task 完成, 也就是:

# 可以保证 yyy 一定在 xxx 执行结束后才会执行
await xxx
yyy

# yyy 很可能在 xxx 执行前就开始执行
task = create_task(xxx)
yyy

Future and run_in_executor (OK)

Task 是 Future 的子类, 一般用的多的是 await, 偶尔需要用到 task, 比较少直接用 future.

下面的代码的主要应用场景是: 假设有一段耗时的同步函数代码, 我希望让它不阻塞我的事件循环, 并且在"后台"执行, 直到某个时间点我需要确认其执行完才能执行后面的逻辑

import asyncio
import threading
import time

def do_work(fut: asyncio.Future):
    time.sleep(2)  # 假装是一个耗时操作
    future.set_result("线程完成")  # 手动设置结果

async def main():
    loop = asyncio.get_running_loop()
    future = loop.create_future()
    threading.Thread(target=do_work, args=(future,)).start()
    # 这里使用 asyncio 再做些别的事情
    result = await future
    print(result)

if __name__ == "__main__":
    asyncio.run(main())

而这种场景已有官方的解决方案: run_in_executor

import asyncio
import time

def do_work():
    time.sleep(2)
    return "线程完成"

async def main():
    loop = asyncio.get_running_loop()
    # 第一个参数传 None, 表示默认用线程池
    result = await loop.run_in_executor(None, do_work)
    print(result)

if __name__ == "__main__":
    asyncio.run(main())

疑问(但基本上可以确认, 只是实现细节不清楚): run_in_executor 的底层实现是基于 Future 的

select/selector

常见的 epoll 事件类型有:

select.EPOLLIN:对应的值是1,表示文件描述符可读,即有数据可以读取(例如客户端发送了数据,或者有新连接请求)。 select.EPOLLOUT:对应的值是4,表示文件描述符可写,即可以向其发送数据而不会阻塞。 select.EPOLLERR:对应的值是8,表示文件描述符上发生了错误。 select.EPOLLHUP:对应的值是16,表示文件描述符被挂起或连接关闭。 select.EPOLLET:对应的值是2的31次方,用于启用边沿触发模式(默认是水平触发)。

服务端

import select
import socket

# 创建一个 TCP/IP socket
server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server_socket.bind(('localhost', 8080))
server_socket.listen(5)
server_socket.setblocking(False)

# 创建一个 epoll 对象
epoll = select.epoll()

# 注册服务器 socket 到 epoll,监听其可读事件
epoll.register(server_socket.fileno(), select.EPOLLIN)

try:
    connections = {}
    while True:
        # 等待事件发生
        events = epoll.poll(1)  # 1秒超时

        for fileno, event in events:
            print(fileno, event)
            if fileno == server_socket.fileno():
                # 有新的连接
                connection, address = server_socket.accept()
                connection.setblocking(False)
                print(f"Connected by {address}")
                
                # 注册新连接的 socket 到 epoll
                epoll.register(connection.fileno(), select.EPOLLIN)
                connections[connection.fileno()] = connection
            
            elif event & select.EPOLLIN:
                # socket 可读
                data = connections[fileno].recv(1024)
                if data:
                    print(f"Received: {data.decode()} from {connections[fileno].getpeername()}")
                    # 响应客户端
                    connections[fileno].send(data)
                else:
                    # 关闭连接
                    epoll.unregister(fileno)
                    connections[fileno].close()
                    del connections[fileno]

finally:
    epoll.unregister(server_socket.fileno())
    epoll.close()
    server_socket.close()

客户端

import socket

# 创建一个 TCP/IP socket
client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

# 连接到服务器
server_address = ('localhost', 8080)
print(f"Connecting to {server_address[0]} port {server_address[1]}")
client_socket.connect(server_address)

try:
    # 发送数据
    message = 'This is the message. It will be echoed back by the server.'
    print(f"Sending: {message}")
    client_socket.sendall(message.encode())

    # 接收响应
    data = client_socket.recv(1024)
    print(f"Received: {data.decode()}")

finally:
    print("Closing connection")
    client_socket.close()
PreviousAdvanced PythonNextPython Third Party

Last updated 1 month ago

Was this helpful?

备注:parse_args 函数存在 prefix-match的特性, 具体可参考的如下例子:

TypeVar 比较常见, 解释如下

在运行时, 基本上 x = NewType("UserID", int)(x), Python 3.8 中对 NewType 如下:

类似这个写法 List[int], 这种方括号的写法看起来似乎是 C++ 里的泛型(模板)一样, 我们也可以自定义 (例子参考)

参考

引用的说明, 这个模块主要提供了一个针对类的装饰器 dataclass,以自动生成一些特殊函数,例如:__init__, __repr__, __eq__ 等(对应于 C 语言中的数据结构,即没有实例函数)

支持

支持

unicode 的完整列表可以参考 ,unicode 的字符范围为:0-0x10FFFF,因此最多能容纳1114112个码位, 大多数字符的编码范围在 0-0xFFFF (最多65536个)之间。一些例子如下:

字符类别参见,例如:类别 "Zs" 表示 Space Seperator, 例如空格;但制表符的类别为 "Cc" Control;而中文字符以及很多其他字符被归为 Lo Other Letter。

科普

map只接收单参数的函数, starmap是接受多个参数的版本. 这四个函数实际上都调用了_map_async, 具体参见源码, map会阻塞主进程的执行, 但子进程是并行化的. 在中提到, 对于序列很长的时候, 可以使用imap并指定chunksize参数, 能极大提升效率

(待理解)

python raw string: python中的raw string不能以奇数个反斜杠作为结尾, 例如x=r'\'这种语句解释器会直接报错, 但x=r'\\'会被解释器正确地解释为两个反斜杠. 其原因可以参见这个, 简述如下: 在python中对raw string的解释是碰到\就将\与下一个字符解释为本来的含义, 也就是说raw string出现了反斜杠, 后面必须跟着一个字符, 所以r'\'中的第二个单引号会被认为是一个字符, 但这样一来就没有表示字符串结尾的单引号了.

Unicode与UTF-8的关系: 参考, 简单来说, Unicode是一个字符代码, 用整数(目前至多为21bit)来表示所有的字符对应关系, 而UTF-8是一种具体的字符编码. 前者的重点在于将全世界的字符都有一个唯一的对应关系, 全球公认, 而后者的重点在于在保证能编码所有Unicode中规定地字符集的前提下, 利用更巧妙地方式对这种对应关系进行存储, 方便传输.

参考资料:

参考博客:

以一个例子加以说明:

argtypes与restype的问题参见: , .

备注:__name__ vs __qualname__:

多个参考资料推荐这个, 但貌似是针对 Python 2 的, 可能需要辩证看待:

select 似乎是对系统调用的直接暴露, 以下代码段暂时不知道在做啥

官方文档
官方文档
实现源码
这篇博客
博客
官方文档
python 3.8
UCD version 12.1.0
python 3.11
UCD version 14.0.0
wiki
官网
官方文档
链接
python官方文档
concurrent.futures vs multiprocessing.Pool
问答
阮一峰博客
阮一峰博客
Python - using C and C++ libraries with ctypes | Solarian Programmer
来源
链接1
链接2
stackoverflow
A Curious Course on Coroutines and Concurrency
https://realpython.com/async-io-python/
https://chatgpt.com/share/2ee353c0-8043-4dd5-a8f4-a7c9504310fd